ATP consumption rate per cross bridge depends on myosin heavy chain isoform.
نویسندگان
چکیده
In the present study, we tested the hypothesis that intrinsic differences in ATP consumption rate per cross bridge exist across rat diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. During maximum Ca(2+) activation (pCa 4.0) of single, Triton X-permeabilized Dia(m) fibers, isometric ATP consumption rate was determined by using an NADH-linked fluorometric technique. The MHC concentration in single Dia(m) fibers was determined by densitometric analysis of SDS-PAGE gels and comparison to a standard curve of known MHC concentrations. Isometric ATP consumption rate varied across Dia(m) fibers expressing different MHC isoforms, being highest in fibers expressing MHC(2X) (1.14 +/- 0.08 nmol. mm(-3). s(-1)) and/or MHC(2B) (1.33 +/- 0.08 nmol. mm(-3). s(-1)), followed by fibers expressing MHC(2A) (0.77 +/- 0.11 nmol. mm(-3). s(-1)) and MHC(Slow) (0.46 +/- 0.03 nmol. mm(-3). s(-1)). These differences in ATP consumption rate also persisted when it was normalized for MHC concentration in single Dia(m) fibers. Normalized ATP consumption rate for MHC concentration varied across Dia(m) fibers expressing different MHC isoforms, being highest in fibers expressing MHC(2X) (2.02 +/- 0.19 s(-1)) and/or MHC(2B) (2.64 +/- 0.15 s(-1)), followed by fibers expressing MHC(2A) (1.57 +/- 0.16 s(-1)) and MHC(Slow) (0.77 +/- 0.05 s(-1)). On the basis of these results, we conclude that there are intrinsic differences in ATP consumption rate per cross bridge in Dia(m) fibers expressing MHC isoforms.
منابع مشابه
Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics.
Myosin heavy chain (MHC) isoforms alpha and beta have intrinsically different ATP hydrolysis activities (ATPase) and therefore cross-bridge cycling rates in solution. There is considerable evidence of altered MHC expression in rodent cardiac disease models; however, the effect of incremental beta-MHC expression over a wide range on the rate of high-strain, isometric cross-bridge cycling is yet ...
متن کاملCross-bridge kinetics in respiratory muscles.
In respiratory muscles, force generation and shortening depend on the cyclical interaction of actin and myosin (cross-bridge cycling). During cross-bridge cycling, adenosine triphosphate (ATP) is hydrolysed. The globular head region of the myosin heavy chain (MyHC) possesses both the binding site to actin and the site for ATP hydrolysis. Therefore, the MyHC is both a structural and enzymatic pr...
متن کاملEffect of denervation on ATP consumption rate of diaphragm muscle fibers.
Denervation (DNV) of rat diaphragm muscle (DIAm) decreases myosin heavy chain (MHC) content in fibers expressing MHC(2X) isoform but not in fibers expressing MHC(slow) and MHC(2A). Since MHC is the site of ATP hydrolysis during muscle contraction, we hypothesized that ATP consumption rate during maximum isometric activation (ATP(iso)) is reduced following unilateral DIAm DNV and that this effec...
متن کاملMaximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers.
In the present study, myosin heavy chain (MHC) content per half sarcomere, an estimate of the number of cross bridges available for force generation, was determined in rat diaphragm muscle (Dia(m)) fibers expressing different MHC isoforms. We hypothesize that fiber-type differences in maximum specific force [force per cross-sectional area (CSA)] reflect the number of cross bridges present per C...
متن کاملMyosin light chain replacement in the heart.
Myosin-actin cross-bridge kinetics are an important determinant for cardiac systolic and diastolic function. We compared the effects of myosin light chain substitutions on the ability of the fibers to contract in response to calcium and in their ability to produce power. Transgenesis was used to effect essentially complete replacement of the target contractile protein isoform specifically in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 94 6 شماره
صفحات -
تاریخ انتشار 2003